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A molecular view of Tanner’s law: molecular
dynamics simulations of droplet spreading
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By truncating the range of van der Waals forces in our molecular dynamics model
we reduce the lengthscale and timescale gap between the outer (wedge) and inner
(precursor) regions in droplet spreading simulations. This results in a molecular
model which combines atomic-scale resolution with the ability to capture large-scale
behaviour as manifested by the Tanner spreading law. Our results show that Tanner’s
law can be recovered, even if van der Waals effects and the resulting precursor film
are limited to distances of the order of three atomic diameters from the substrate.
In other words, removal of the singularity is not necessary up to a few atomic
diameters from the contact line. The very good quantitative agreement with theory
and experiments suggests that the original precursor theory of de Gennes can be
generalized to precursors of molecular thickness in which flow is not characterized
by the continuum (Stokes) model. Gravity current simulations are also in excellent
agreement with the theory of Huppert and recent experimental results showing
lubrication scalings at small capillary numbers.

1. Introduction
The subject of contact-line motion (Dussan V. 1979) has received significant

attention over the last three decades due to both the large number of practical
applications in which it appears and the interesting scientific challenges it poses. The
most challenging, perhaps, aspect of the problem is the removal of a divergence in
the stress at the contact line predicted by continuum theory (Huh & Scriven 1971).
This failure of continuum theory has prompted researchers to use various molecular
approaches such as molecular-kinetic modelling (Blake & Haynes 1969; Cazabat
et al. 1997), molecular dynamics simulations (Koplik, Banavar & Willemsen 1989;
Thompson & Robbins 1989; Yang, Koplik & Banavar 1991; De Coninck et al. 1995;
D’Ortona et al. 1996; Hadjiconstantinou 1999) and Monte Carlo simulations (Milchev,
Milchev & Binder 2002), to capture the spreading dynamics in the contact-line vicinity.
These studies have been useful for providing information on the local fluid behaviour,
and in the case of certain liquid–liquid flows where disjoining pressure effects are
not important, for making quantitative connections to large-scale hydrodynamic
behaviour (Thompson & Robbins 1989; Hadjiconstantinou 1999).

In the case of liquid–gas systems, molecular simulations have been limited to
the study of nanoscopic droplets. These droplets are too small to exhibit the
macroscopically observed Tanner spreading law (Voinov 1976; Tanner 1979) since
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their characteristic lengthscales fall well within the distances where van der Waals
forces are important. As a result, molecular dynamics simulations to date have
only been able to provide information on terraced spreading of nanoscale droplets
(De Coninck et al. 1995; D’Ortona et al. 1996; Cazabat et al. 1997) which exhibit
diffusive-like dynamics (Abraham, Cuerno & Moro 2002).

The objective of this paper is to perform molecular dynamics simulations of fully
wetting droplets spreading under capillary action which capture the macroscopically
observed Tanner law. One of the leading theories of this behaviour is that of de
Gennes and co-workers (Hervet & de Gennes 1984; de Gennes 1985) which removes
the shear stress singularity at the contact line through a precursor film.† As we explain
below, our approach was inspired by this theory; the resulting agreement between
our results and macroscopic predictions thus validates the physical premise of this
approach. In fact, our results imply the validity of a more general theory which
includes non-continuum precursors.

According to the theory by de Gennes and co-workers, fully wetting droplets exhibit
two regions where different dynamical processes dominate, namely the region where
surface tension forces balance viscous forces (which we will refer to as the ‘wedge
region’) and the precursor film where forces due to disjoining pressure are balanced
by viscosity. Our approach utilizes this fact to obtain molecular simulations which
capture both the outer macroscopic behaviour and the molecular behaviour at the
contact line. This is achieved by cutting off the wall–fluid interaction at a distance
rc and supplying no long-range correction for this interaction. This ensures that
at heights above rc van der Waals forces from the substrate, and hence disjoining
pressure effects, do not play a role. In some sense, this approach reduces the region
where van der Waals effects are important in order to reduce the lengthscale and
timescale gap between the molecular-scale contact-line physics and the outer-scale
physics, and make the observation of both phenomena possible within the same
model. Such an approach is necessary since a brute force study of Tanner’s law using
molecular dynamics would have been well beyond our computational capabilities;
typical droplet sizes amenable to simulation are of the order of the minimum thickness
of the adiabatic precursor film (Joanny & de Gennes 1986), which is itself significantly
smaller than the range of van der Waals forces.

Owing to its small transverse dimension (less than three atomic diameters), flow
in the precursor film observed in our simulation is not described by the Stokes
flow/disjoining pressure model. This, however, should not be seen as a disadvantage
for two reasons. First, a quantitative verification of de Gennes’ predictions for
large-scale droplets involving a continuum precursor has been completed recently
(Kavehpour, Ovryn & McKinley 2003). Second, our results serve to demonstrate that
de Gennes’ theory is in fact more generally applicable than originally believed, since
it also captures the emergence of Tanner’s law from the matching of the wedge region
to a non-continuum precursor region. Our results show that Tanner behaviour can still
be obtained when the wedge region extends to distances of three atomic diameters
from the contact line.

Behaviour that is close to Tanner’s law was recently reported by Milchev et al.
(2002) who used a simple Monte Carlo model of droplet spreading. The origin of
the observed behaviour is not clear since the Monte Carlo approach is expected to

† Although a singularity still exists at the end of the precursor film, this theory is successful in
accounting for the total dissipation in the spreading system, albeit through the use of conjectures,
by considering only the droplet and the early part of the precursor.
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model correctly equilibrium systems or systems approaching equilibrium and should,
strictly speaking, not be used for non-equilibrium flows. Additionally the system used
by Milchev et al. (128 chains of 32 beads) is so small that should, under normal
circumstances, be dominated by van der Waals forces and exhibit terraced spreading.
The observed behaviour may be due to the simplified wall–fluid interaction potential
used in the above study (the wall was structureless and the only force between the
wall and the fluid was due to a shifted van der Waals potential) which may have
resulted in a sufficiently reduced wall–fluid interaction.

In the next section we describe our simulation method and in § 3 we present our
simulation results. We finish with our conclusions in § 4.

2. Molecular simulations
We performed molecular dynamics (Allen & Tildesley 1987) simulations of droplet

spreading on a molecular wall. In order to minimize the computational cost of our
simulations, two-dimensional (cylindrical) droplets in the (x, z)-plane were considered;
this was achieved by making the simulation in the y-direction thin and periodic.
The molecular motion and dynamics was, of course, three-dimensional. A Langevin
thermostat (He & Robbins 2001) was used to maintain the substrate at a constant
temperature of T = 0.793ε/kB , where kB is Boltzmann’s constant.

The spreading droplet consists of 6799 linear polymeric chain molecules. Each chain
contains four monomers interacting through a Lennard–Jones potential

VLJ (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]
, (2.1)

where ε and σ are the Lennard–Jones characteristic energy and length scales. A

characteristic molecular timescale can be defined as tLJ =
√

mσ 2/ε, where m is the
mass of a fluid monomer. Neighbouring monomers on the chain interact with an
additional FENE (finitely extensible nonlinear elastic) potential,

VFENE(r) = − 1
2
kR2

0 ln[1 − (r/R0)
2], (2.2)

where k = 30εσ −2 and R0 = 1.5σ . These values have been widely used in previous
simulation studies of polymeric systems (He & Robbins 2001). At the temperature of
the simulation, the polymer droplet is in the fluid state and there is almost no vapour
present. The droplet equilibrium density is ρ = 0.9σ −3.

The wall is made of four layers of atoms which are explicitly simulated. Wall
atoms are tethered to lattice sites of an FCC lattice with its (111) surface facing the
fluid. At the wall density, ρw = 0.81σ −3, the nearest neighbour distance of the lattice
is dnn =1.2σ and the thickness of four layers of wall atoms is larger than 3σ , the
cut-off distance of the wall–fluid interaction. The tethering potential is also of the
FENE type with kw = 460εσ −2 and Rw0 = 15σ . The value of kw is chosen according
to the Lindeman criterion for no melting (He & Robbins 2001) which requires the
root-mean-square distance of the oscillating wall atoms around their tethering points
to be much smaller than the lattice constant.

The wall atoms interact with fluid monomers through a Lennard–Jones potential
cut-off at rc = 3.0σ . The wall–fluid interaction parameters (εf w =4.0ε and σf w =1.0σ )
were chosen such that polymeric fluid completely wets the substrate but otherwise
arbitrarily. This interaction is similar to the one used and extensively studied by
De Coninck et al. (1995), D’ortona et al. (1996) and Koplik & Banavar (2000). The
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Figure 1. Averaged droplet shape over a period of 4000tLJ . The shape shows the wedge
region where surface tension balances viscous forces and the precursor region were the excess
free energy associated with the uncompensated Young force is dissipated (de Gennes 1985).

spreading fluid exhibits layering close to the wall, similar to that observed by De
Coninck et al. (1995) and D’Ortona et al. (1996).

The droplet has an initial contact angle θ0 ∼ 30◦, an initial radius R0 ∼ 67σ and
a height h0 ∼ 30σ . This angle represents a compromise between computational cost
and the need for a small contact angle, an inherent approximation in the version
of Tanner’s law studied here. Smaller angles would require very large systems since
the droplet height needs to be at least of order 20σ–30σ for a non-negligible wedge
region to be present, especially at late times.

We have used a gravity-driven Poiseuille flow to measure the viscosity of our
spreading fluid. At the average density and temperature of our simulation the viscosity
is measured from the curvature of the velocity profile. We found that the viscosity
of the polymer droplet is µ = (2.6 ± 0.2)εσ −3tLJ . The surface tension of the droplet
is measured by calculating the stress tensor of an equilibrium cylindrical polymer
droplet suspended in vacuum (since there is no vapour). The surface tension, γ , can
be evaluated using the Laplace equation γ = �pR, where �p is the difference between
pressure inside a droplet and the pressure of the vapour (in our case zero). A second
approach for measuring the surface tension is through the integration of the difference
between the longitudinal and tangential components of the stress tensor (Rowlinson &
Widom 1982). Provided that the radius of the droplet is large (compared to the
molecular diameter),

γ ≈
∫ ∞

0

(P⊥ − P‖) dr, (2.3)

where r is the radial coordinate. Both methods give an estimate of γ =(1.1±0.1)εσ −2.
The droplet shape is extracted from our simulation data by scanning the local fluid

density. The latter is calculated in two-dimensional bins of approximate linear size 5σ
in the scanning direction and 1σ in the normal to the scanning direction. The droplet
boundary is defined as the location where the local fluid density first drops to half
of that inside the droplet. Our tests show that this algorithm provides a very good
description of the droplet shape for both horizontal and vertical scanning.

3. Simulation results
3.1. Capillary-driven flow

Figure 1 shows the average shape of the spreading droplet in the contact-line vicinity.
The averaging was performed over a period of 4000tLJ during which the droplet
shape changes little. The figure shows the wedge region of the droplet as well as the



Molecular dynamics simulations of Tanner spreading 127

(a) (b)

(c) (d)

Figure 2. Snapshots of the droplet spreading process at (a) t/tLJ = 5000, (b) 10 000, (c) 15 000,
(d) 20 000. Particles in the precursor region in (a) are marked with a dark colour such that
their subsequent motion can be tracked. The caterpillar-type motion first reported by Dussan
V. & Davis is observed, as well as slipping motion close to the tip of the precursor.

precursor film. The precursor is very thin – of the order of three molecular layers at
the contact line and proceeds to thin to a monomolecular layer at the leading edge.
The figure also shows that the wedge approximation is well satisfied, thus simplifying
the definition of the apparent contact line location. Our results involving the contact
angle are insensitive to the exact location of its measurement in the height range
z = [3.1–7]σ .

The fluid motion inside the droplet in the contact-line vicinity is described by the
four snapshots of the spreading process shown in figure 2. In this figure, the atoms
forming the precursor at some initial time are labelled by a dark color. By tracking
the relative motion of these molecules we can see that the contact line advances in
the caterpillar-like motion also observed in macroscopic experiments by Dussan V. &
Davis (1974), while the front of the precursor layer is slipping along the substrate.

3.1.1. Tanner’s law

We have used two independent methods to quantify the spreading characteristics
of the droplets. In the first approach, we examine the time evolution of the radius
(half-length in two dimensions) of the droplet, which is expected to follow the form

R ∝ (t − t0)
β, (3.1)

if the droplet spreads according to Tanner’s Law dR/dt ∼ θm. In the above equation
β can be related to m by β = 1/(2m + 1) (Ehrhard & Davis 1991).

The radius of the droplet (in two dimensions), R, is defined from the droplet
centreline to the apparent contact line, that is the precursor film is excluded. This is a
subtle distinction, usually ommited in large-scale studies where the precursor length
is small and usually not visible. We have found the spreading rate based on R, that is
the droplet spreading rate, to be sensitive to the addition of a long-range correction
to the interaction between the wall and the fluid in the long time limit (for details on
this correction see Israelachvili 1991). On the other hand, we find that the addition of
a long-range correction has a small effect on the spreading rate at short times when
that is measured at the precursor tip, in agreement with previous work (De Coninck
et al. 1995; D’Ortona et al. 1996; Koplik & Banavar 2000). This observation can be
explained by the fact that at short times the droplet motion is dominated by the
precursor layer motion (in figure 3 dR/dt ≈ 0 at short times) which is not sensitive to
long-range forces.
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Figure 3. Droplet radius (to contact line) as a function of time. The solid line (dashed beyond
the range of numerical data) shows the best fit R ∝ (t − t0)

0.118 at later (hydrodynamic) times.

We fit our simulation data by searching for a range of values of t0 that minimize
the target function,

I (t0) =
∑

i

[lnRi − lnα(t0) − β(t0) ln(ti − t0)]
2 , (3.2)

where α(t0) and β(t0) are linear regression fitting parameters for ln Ri and ln(ti − t0)
with t0 fixed. A similar power law is obtained by looking at even later times and
ignoring t0. From our fit we find β = 0.118 ± 0.03, which is in good agreement with
the theoretically expected value of 1/7. Figure 3 shows the simulation result and our
best fit to this data.

In figure 4 we plot the contact angle versus the capillary number, Ca = µU/γ , where
U = dR/dt is the contact-line speed. Both quantities were measured as averages (to
reduce statistical fluctuations) over small time segments (O(1000tLJ )) during which
we assume that they change very little. The averaging procedure we used is as follows.
Droplet configurations are recorded every 20tLJ and the algorithm described in § 2
is used to extract the droplet boundary. Assuming that the droplet front does not
change much during this time period and that it only drifts with the contact-line
velocity, we can shift all droplet shapes back to a reference position, that is, we
observe the droplet in the moving frame of the contact line. The shifted shapes are
then averaged over time and an average contact angle is extracted by linear regression
on the averaged droplet shape. We found that this method provides significantly less-
fluctuating estimates for the contact angle compared to averaging of the instantaneous
contact angles. The contact-line velocity is calculated by differentiating a smoothed
version of the droplet radius–time relation.

The data are described by the following fit:

θ = 2.7Ca0.29, (3.3)

which is in very good agreement with previous data from experimental studies on
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Figure 4. Dynamic contact angle as a function of the capillary number
in capillary-driven spreading.

macroscopic droplets (Kavehpour, Ovryn & McKinley 2003) as well as theoretical
predictions (see Eggers & Stone 2003 and Kavehpour 2003).

The above two independent measurements show that Tanner’s law is recovered in
droplets with heights as small as 20 molecular diameters, as long as van der Waals
effects are limited to within 3σ of the substrate. Smaller droplets with heights less
than 15 molecular diameters did not exhibit this behaviour.

3.2. Gravity-driven droplets

We also performed simulations of gravity-driven droplets by adding a body force g

acting on the fluid in the direction parallel to the substrate (x-direction). The lack of
a force normal to the substrate is consistent with theoretical analyses (Huppert 1982;
Troian et al. 1989) where hydrostatic effects are neglected.

In this limit, according to Huppert (1982), the droplet can be divided into two
regions. In the long tail region in which a Bond number Bo = ρgx2

N/γ is much larger
than 1, surface tension effects are negligible and a balance between gravity and
viscosity yields a similarity solution for the droplet shape h = h(x, t)

h = (ν/g)1/2x1/2t−1/2, xN = (9A2g/4ν)1/3t1/3 (3.4)

where ν = µ/ρ is the kinematic viscosity, A is the droplet cross-sectional area

A =

∫ xN (t)

0

h(x, t) dx (3.5)

and xN (t) is the location where the droplet ends abruptly through the smoothing
effects of surface tension. In this second region, a quasi-steady solution in a frame
moving with the contact line at xN (t) leads to an approximate similarity solution of
the form

h = hN (t)H (ξ ), H →
(

64

15

)1/4

ξ 3/4 as ξ → 0, (3.6)

where hN = h(xN ) and ξ = (ρg/(γ hN ))1/3(xN − x).
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Figure 5. Droplet shape in gravity-driven flow. The dashed lines denote the theoretical
predictions of Huppert.
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Figure 6. Dynamic contact angle as a function of the capillary number. The square symbols
denote g = 0.00005σ/t2LJ and triangles denote g = 0.00001σ/t2LJ .

Figure 5 shows a comparison between the instantaneous droplet shape and the
theoretical predictions of Huppert. It is remarkable that both shapes are in very
good agreement with the molecular results, and in particular solution (3.6) which is
only approximate (Troian et al. 1989; Goodwin & Homsy 1991). Figure 6 shows the
dynamic contact angle plotted as a function of the capillary number for small values
of the gravity parameter. The data can be fitted by a power law of the form

θ ∝ Ca0.29. (3.7)

This is in very good agreement with data from a recent experimental study on
macroscopic droplets (Kavehpour 2003) which showed that for sufficiently small
capillary numbers (Ca < 0.01) a lubrication scaling of Ca1/3 is observed (Goodwin &
Homsy 1991).

4. Conclusions
In this paper we have shown that by judicious choice and consistent implementation

of the simulation cut-off distance we can perform quantitative numerical droplet
spreading experiments using a molecular dynamics approach. Our approach provides
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an opportunity for simultaneous probing at small distances from the contact line while
offering comparable resolution at the problem outer scale. This allows the validation
of well-known results such as Tanner’s law using molecular methods, combined with
the ability to probe the dynamics of contact lines at a very fine level of detail and very
small scales. Our results for both capillary-driven spreading and gravity currents have
been found to be in agreement with previous theoretical and experimental studies
using more than one independent test.

Our simulations show that the wedge region in Tanner’s law can extend up to
distances of the order of three atomic diameters from the contact line before removal
of the singularity is necessary. Finally, it appears that de Gennes’ wetting theory
can be generalized to precursors that are thinner than the minimum equilibrium
thickness for which adiabatic precursors exist (Joanny & de Gennes 1986). In our
work this precursor is very thin (of the order of a few molecular layers) and lies in the
non-continuum regime where the Stokes approximation is not expected to be valid.

The authors are indebted to Professors Anette Hosoi, Pirouz Kavehpour and Gareth
McKinley for useful comments and discussions and for making their experimental
results available before publication. This work was suported by the Singapore–MIT
alliance.
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